The Genital Microbiome in Studies of Bacterial Vaginosis

Jeanne Marrazzo, MD, MPH University of Washington *August 2015*

DISCUSSION

- Bacterial vaginosis (BV)
 - Clinical importance
 - Implications for STI/HIV transmission; reproductive health
 - Traditional guidance for treatment trials
 - Endpoint definition; FDA guidance
- Implications of microbiome approach for BV
 - Endpoint definition
 - Pathogenesis & natural history
 - Sexual behavior (BVAB transmission)

Benefits of an Optimal Vaginal Environment

Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns

Maria G. Dominguez-Bello^{a, 1,2}, Elizabeth K. Costello^{b, 1,3}, Monica Contreras^c, Magda Magris^d, Glida Hidalgo^d, Noah Fierer^{e, f}, and Rob Knight^{b,g}

- Protection from clinical BV, PID, other pathogens
 - HIV (60% increase), chlamydia, GC, trichomoniasis
- Optimal birth outcomes (short-term)
 - Normal birth weight
 - Normal timing of delivery
 - Fewer pregnancy-associated infections
- Optimal health outcomes (long-term)
 - Transfer of maternal microbiota to infant
 - Lower rates of autoimmune diseases (asthma), metabolic disorders (Dominguez-Bello 2010; Torrazza 2011; Neu 2011)
 - Mediated by rapid colonization of skin, gut, genital tract with maternal microbiota

Gram Stain (Nugent score) & Clinical Criteria (Amsel's) Define BV & Cure

Nugent = 0

Nugent 7 -10

Widely Used Diagnostic Tool – Gold Standard for BV Diagnosis

Spiegel CA, Amsel R, Holmes KK. 1983. J Clin Microbiol 18:170-177

Nugent RP, Krohn MA, Hillier SL. 1991. J Clin Microbiol 29:297-301.

BV TREATMENT TRIALS: Proposed Timeline & Terminology

Marrazzo STD 2010

FDA Guidance for BV Trials

- BV definition at enrollment:
 - All 4 Amsel criteria plus confirmation by Nugent score (<u>></u>7)
 - NOTE: symptoms not required
- 1998: clinical cure = absence of all Amsel criteria; therapeutic cure = clinical cure plus Nugent score <4 at 21-30 days after starting treatment
- On review in 2012, definition of clinical cure was modified to exclude Amsel's pH criteria

FDA Guidance for BV Trials

- BV definition at enrollment:
 - All 4 Amsel criteria plus confirmation by Nugent score (>7)
 - NOTE: symptoms not required
- Clinical cure:

- Absence of KOH odor, clue cells, abnormal discharge
- Symptom resolution (additional; not well standardized)

Are These Relevant in the Era of Molecular Approaches?

- BV definition at enrollment:
 - All 4 Amsel criteria plus confirmation by Nugent score (≥7)
 - NOTE: symptoms not required
- Clinical cure:

- Absence of KOH odor, clue cells, abnormal discharge
- Symptom resolution (additional; not well standardized)

Key Questions

- Nugent Criteria: Do bacterial species other than those previously described (*Lactobacillus*, *Gardnerella*, *Bacteroides*, *Mobiluncus*) contribute to bacterial morphotypes observed by Gram stain?
- Amsel Criteria: Do all BV-associated bacteria contribute equally to these signs?
 - Quantity? Identity?

The Effects of Intravaginal Clindamycin and Metronidazole Therapy on Vaginal Mobiluncus Morphotypes in Patients With Bacterial Vaginosis

PAUL NYIRJESY, MD,* MATTHEW J. MCINTOSH, PHD,† JANA I. STEINMETZ, MS,† ROBERT J. SCHUMACHER, PHD,† AND JAMES L. JOFFRION, BS, PMP†

Fig. 1. Mean *Mobiluncus* scores (0–2) in each treatment group at the entry visit (baseline) and the test-of-cure (TOC) visit. 2 = more than 5 morphotypes observed per oil immersion field; 1 = <1 to 4 morphotypes observed; 0 = no morphotypes observed. Mean *Mobiluncus* scores at the TOC visit in the MVG group were significantly higher in the MVG group than in the CVSDC group (P = 0.0471). CVSDC indicates clindamycin vaginal single-dose cream; MVG = metronidazole vaginal gel.

"Although current data suggest that there are important differences between women diagnosed with BV with or without the presence of Mobiluncus morphotypes, <u>it is currently unknown</u> <u>whether these variations can be directly attributed</u> to *Mobiluncus* species or to some other unknown organisms for which these Gram stain findings are a marker."

More Than Meets the Eye: Associations of Vaginal Bacteria with Gram Stain Morphotypes Using Molecular Phylogenetic Analysis

Sujatha Srinivasan^{1*}, Martin T. Morgan², Congzhou Liu¹, Frederick A. Matsen², Noah G. Hoffman³, Tina L. Fiedler¹, Kathy J. Agnew⁴, Jeanne M. Marrazzo⁵, David N. Fredricks^{1,5,6*}

Women with BV Broad-Range PCR and Pyrosequencing

Nugent 7-8

- Veillonella montpellierensis
- Other

Nugent 9-10

BVAB1

- Leptotrichia amnionii
- Lactobacillus iners
- Megasphaera sp. type 1
- Gardnerella vaginalis
- Sneathia sanguinegens
- Prevotella genogroup 1
- Atopobium vaginae
- Prevotella genogroup 2
- Eggerthella
- Prevotella genogroup 3
- BVAB2
- Lactobacillus crispatus
- Other

Fredricks DN, Fiedler TL, Marrazzo, JM. 2005. NEJM 353:1899-1911.

Fluorescence Micrographs & Gram Stains of Vaginal Fluid Smears for 2 Women with Nugent Score =10

A CONTRACT DESIGN	and the transfer the the state of the	qPCR	
	b Det programme a star a star atta	Mobiluncus DNA	2.5 X 10 ⁵
A State of the second s		BVAB1 DNA	2.4 X 10 ⁹
		FISH	
		Mobiluncus cells	<1
	The second second second	BVAB1 cells	661
		qPCR	
		Mobiluncus DNA	1.3 X 10 ⁷
	d	BVAB1 DNA	5.1 X 10 ⁸
No state of the st			
		FISH	
		Mobiluncus cells	145
		BVAB1 cells	908
			-

Conclusions

- Separate lines of evidence suggest that curved GNR designated Mobiluncus morphotypes on Gram stain are more likely BVAB1 in our study population:
 - Broad-range PCR with pyrosequencing
 - Species-specific quantitative PCR.
 - Fluorescence in situ hybridization
- *Prevotella* and *Porphyromonas* spp. were significantly associated with the Bacteroides morphotype, whereas *Bacteroides* species were rare
- Implications:
 - Treatment studies monitor response by Gram stain
 - Natural history studies examine transitions in the microbiota by Gram stain
 - This needs evaluation!

Bacterial Taxa Associated with Amsel's Criteria

- Leptotrichia amnionii & Eggerthella sp. associated with each criteria
- Stars denote bacteria present in >75% of women with BV
- Taxa in bold denote those associated with Amsel's criteria as a composite unit

Srinivasan 2012

Cervicitis in Women Attending an STD Clinic: Association with Specific BVAB

Table 3. Multivariate Analyses of the Relationship Between the Presence and Load of SpecificBacterial Species in Seattle Participants and Cervicitis

Presence Alone	Detection in the Cervix		Detection in the Vagina	
	aOR (95% CI)†	p-value*	aOR (95% CI)†	p-value*
Mageeibacillus indolicus	4.38 (0.84–23.68)	0.086	2.93 (0.57–14.78)	0.232
Lactobacillus jensenii	0.17 (0.02–0.89)	0.032	0.41 (0.06–2.17)	0.401

Presence and Load‡	Detection in the Cervix		Detection in the Vagina	
	aOR (95% CI)†	p-value*	aOR (95% CI)†	p-value*
Mageeibacillus indolicus	1.53 (0.98–2.44)	0.064	1.63 (1.08–2.56)	0.019
Lactobacillus jensenii	0.61 (0.29–1.02)	0.061	0.68 (0.40–1.02)	0.068

Gorgos, Sycuro (STD in press)

BV & Increased HIV Acquisition

- Overall, increased risk of ~60% (Atashili 2008)
- Loss of H₂O₂ (directly virucidal)
- Activation of CD4 by alkaline pH
- Upregulation of cytokines that promote local HIV replication (TNF-alpha, IL-1 beta) & increased shedding
 - HIV shedding increased with intermediate flora or BV (Rebbapragada 2008; Coleman 2007; Sha 2005; Tanton 2011)
 - Not in all prospective studies (Wang 2001; Moreira 2009)
 - Successful BV treatment: decreases in IL-1 beta, IL-8, RANTES & activated CD4 T-cells at endocervix, including CCR5 and CD69 expression (Rebbapragada 2008)

Vaginal microbiota and its role in HIV transmission and infection

REVIEW ARTICLE

Mariya I. Petrova^{1,2}, Marianne van den Broek^{1,2}, Jan Balzarini³, Jos Vanderleyden¹ & Sarah Lebeer^{1,2}

¹KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium; ²University of Antwerp, Department of Bioscience Engineering, Antwerp, Belgium; and ³KU Leuven, Rega Institute for Medical Research, Leuven, Belgium

Bacterial Vaginosis in HIV-Infected Women Induces Reversible Alterations in the Cervical Immune Environment

Anuradha Rebbapragada, PhD,* Kathryn Howe, PhD,* Charles Wachihi, MCChB,† istopher Pettengell, BSc,* Sherzana Sunderji, BSc,* Sanja Huibner, BSc,* T. Blake Ball, PhD,‡ Francis A. Plummer, MD,‡ Walter Jaoko, PhD, MBChB,† and Rupert Kaul, MD, PhD*†§

Bacterial Vaginosis Associated with Increased Risk of Female-to-Male HIV-1 Transmission: A Prospective Cohort Analysis among African Couples

Craig R. Cohen^{1,2}*, Jairam R. Lingappa^{3,4,5}, Jared M. Baeten^{3,4,6}, Musa O. Ngayo⁷, Carol A. Spiegel⁸, Ting Hong³, Deborah Donnell⁹, Connie Celum^{3,4,6}, Saidi Kapiga¹⁰, Sinead Delany¹¹, Elizabeth A. Bukusi^{1,3,5,7}

Model	HR	Adjusted HR*			
Primary analysis					
Pre-visit BV	3.62 (1.74-7.52)	3.06 (1.35-6.95)			
Sensitivity Analyses					
Current visit BV	5.30 (2.21-12.74)	3.97 (1.67-9.43)			
More severe BV status	7.19 (2.59-19.94)	6.98 (2.12-23.0)			

*Fixed covariates: age, geographic region, partner HSV-2 status, circumcision, randomization assignment and STD; Time-dependent covariates: pregnancy, hormonal contraception, plasma HIV-1 RNA, unprotected sex with study partner, CD4 count, outside partners, no. of sex acts with study partner, genital ulcer disease.

PLoS Med 2012

Log₁₀ HIV RNA concentration in plasma and female genital secretions compared by vaginal flora category

Modest increase: 0.2 log ₁₀	Vaginal Flora	Log ₁₀ HIV Mean ± SD	P-Value vs. normal vaginal flora	P-Value* vs. normal vaginal flora	
	Genital HIV RNA	Genital HIV RNA			
	Normal vaginal flora	3.04 ± 0.99	N/A	N/A	
	Intermediate vaginal flora	3.25 ± 1.01	0.0035	0.058	
	BV	3.23 ± 0.99	0.0023	0.095	
	Plasma HIV RNA				
	Normal vaginal flora	3.81 ± 1.00	N/A	N/A	
	Intermediate vaginal flora	3.96 ± 1.07	0.037	N/A	
	BV	3.99 ± 1.07	0.0056	N/A	

*After controlling for plasma HIV RNA

Cohen PloS Med 2012

BV & Increased HIV Transmission

- Bacteria may activate Langerhans cells and CD4+ T-cells (Donoval, 2006; deJong 2009)
 - May involve direct stimulation by BVAB of relevant immune targets in male genitalia
 - BVAB / LB shared in male & female partners (Bukusi 2011; Gray 2009; Marrazzo 2009)
 - Male circumcision changes microbiota of penis, and reduces women's risk of subsequent BV (Price 2010; Gray 2008; Liu 2013)

Kyongo 2015

Some Answers, but...

- BV is a dysbiotic syndrome associated with acquisition of complex vaginal bacterial communities that include many uncultivated species
 - Heterogeneity may explain differences in treatment outcomes, relapse rates, & incidence of adverse sequelae
 - This heterogeneity ideally measured with comprehensive, complementary approaches to defining bacterial communities—should be defined in both treatment trials & natural history studies
 - We can't neglect to study the behavioral & host factors involved

Acknowledgements: UW-FHCRC Genital Health Study Team

- David Fredricks
- Kathy Ringwood
- Tina Fiedler
- Kathy Thomas
- Sujatha Srinavasan
- Congzhou Liu
- Kathy Agnew
- Nancy Dorn
- Dana Kubulis
- Dwyn Dithmer
- Laura Sycuro

Thank you!

Complexity: Immunology in BV

 Production of sialidase (IgA destruction), glycosidase, volatile amines; IL-8 increase variable; ?SCFA (Mirmonsef 2012)

Association of bacteria with NGU

OR1.1 (0.42-2.66)4.7 (0.57-39.05)--2.9 (1.1-7.4)(95% CJ):p=1.0p=0.15p=0.03

Association of *Mobiluncus* morphotype with BVAB1 sequence reads

Mobiluncus morphotype abundance (Curved Gram negative rods)

Curved Gram-negative rods visualized by Gram stain are more likely to be the uncultivated bacterium, BVAB-1, rather than the widely accepted *Mobiluncus* spp.

Women with BV Species-Specific Quantitative PCR

